Seafood and Climate Change SE Insights from Life Cycle Access

Sara Hornborg, researcher at RISE – Research Institutes of Sweden Nordic Climate Change Forum for Fisheries and Aquaculture, Dec 9 – 10 2021, Helsingør

Today's talk

- Greenhouse gas emissions (GHG) of seafoods
 - Variability
 - Drivers
 - Reduction potentials
- Opportunities and challenges for industry and policy

Seafood - carbon footprint overview

Gephart et al. (2021) Environmental performance of blue foods. Nature 597; 360-366

Capture fisheries: drivers and variability

RI. SE

4

Example: Norwegian fisheries

Ziegler et al. (2021) Greenhouse gas emissions of Norwegian seafoods. From comprehensive to simplified assessment. J Ind Ecol 1-12

Ecosystem changes "Simplifying the Sea"

Capture fisheries - trends Global GHG development

Parker et al. (2018) Nature climate change 8; 333-337 Anderson et al. (2011) PloS ONE 6, e14735

Stock status Detail no. 1

- Iceland (1997–2018): CO₂ emissions from *ITQ regulated fishing* fleet fell per unit catch (~40%) overall catches and abundance by far the most important factors¹
- Norway (2003-2012): increasing energy efficiency correlated with catch per days at sea, fish stock biomass, quota, and fuel price (little evidence of reductions from technological improvements)²
- Australia: many fisheries have decreased in fuel consumption, particularly in response to *increases in biomass and decreases in overcapacity*³
- **Theoretical:** l/kg rises hyperbolically with fishing effort relatively flat at low levels of effort but rises steeply as effort increases and biomass and catch decline

¹Kristofersson et al. (2021) ICES Journal of Marine Science 78, 2385-2394 ²Jafarzadeh et al. (2016) Journal of Cleaner Production 112, 3616-3630. ³Parker et al. (2015) Journal of Cleaner Production, 87, 78-86. ⁴Hornborg & Smith (2020) ICES J Mar Sci 77, 1666-1671.

Size matters Detail no. 2

Svedäng & Hornborg (2014) Selective fishing induces density-dependent growth. Nature communications 5, 1-6.

Local management actions/fleets Detail no. 3

- Lobster fishing in NW Atlantic: fishing in the US requires 3 times as much bait than in Canada (3 kg herring/kilo lobster) – but the same fuel use¹
- Different fleets fishing on the same stock (*Pandalus borealis*) exhibit different fuel use per kg, affected by fleet structure and fishing pattern²
- Rock lobster Australia: possibly 80% reduction of emissions from fishing at MEY instead of MSY, but 23% increase from introduction of MPA³

¹Driscoll et al. (2015) *Fish Res* 172, 385-400 ²Ziegler et al. (2016) *ICES J Mar Sci 73*, 1806-1814 ³Farmery et el. (2013) *J Clean Prod* 64, 368-376

The role of fishery management

a Swedish case study

The role of fishery management

quick fixes rather than best available technology

Seafood - an overview again

Farmed seafood Norwegian examples

Ziegler et al. (2013) The carbon footprint of Norwegian seafood products on the global seafood market. J Ind Ecol 17, 103-116.

Feed: composition and amount Norwegian salmon farming

RI. SE

Common and unique pressures

Uncertainties in GHG estimates -a brief note on knowledge gaps-

- Current estimates are highly influenced by underpinning data (e.g. age, representative) and methodological choices of the LCA (e.g. system boundaries, allocation of burdens)
- Knowledge gaps:
 - Demersal trawling effect on carbon sequestration
 - Use of climate forcing coolants
 - Biogenic emissions from aquaculture
 - Small-scale fisheries (in particular inland fisheries)

To summarize

RI. SE

What matters for seafood? Take home messages

Capture fisheries

- Fuel inputs during fishing most often dominates total carbon footprint
- Influenced by target species (e.g., shoaling or not, gear used, stock status)
 - strongly linked to fishery management

Aquaculture

- Feed inputs most often dominates total carbon footprint
- Influenced by farmed species (e.g., feed conversion efficiency, feed composition)
 - requires both innovations in feed and grow-out

RI. SE

Overview provided in Ziegler et al. (2016) Expanding the concept of sustainable seafood using Life Cycle Assessment. Fish and Fisheries 17, 1073-1093.

Oportunities and challenges Capture fisheries policy-makers and managers

- Short-term mitigation and adaptation
 - from policy to action: quota allocation to certain gears [in line with article 17 of CFP]
 - mitigate unintended consequences of using different tools (effort restrictions spatial measures selectivity)
 - increasing fuel costs and changing ocean will affect fishing patterns, calls for pro-active management!
- Long-term transformation change in path
 - target reference points: allow for higher fish abundance, including a size composition with more large fish [=in line with MSFD descriptors]
 - management allowing for improved carbon sequestration and biodiversity restoration

& potential

Challenge

Opportunities and challenges Seafood industry

- Easier path to cut emissions in capture fisheries!?
 - Opportunities: other energy sources, cut fuel use (gears, fishing pattern technology)
 - Challenges: how&what, investment costs, room for improvement
- Aquaculture:
 - **Opportunities**: efficient feed converters
 - **Challenges**: finding low-impact feed ingredients, feeding efficiencies (eFCR), suitable production location (coastal, offshore or on land)
- Seafood value chains
 - Opportunities: dietary advice, waste less (= less pressure per kg)
 - Challenges: product/process development to utilize new species and side streams while attracting consumers

Nutrient Density

Thank you for your attention!

Sara Hornborg

<u>Sara.Hornborg@ri.se</u> +46 10 516 66 96

Want to know more about our seafood work at RISE?

https://www.ri.se/en/what-we-do/expertises/seafood

RISE - Research Institutes of Sweden AB · info@ri.se · ri.se